Adjunctions in CommRingCat #
Main results #
CommRingCat.adj:σ ↦ ℤ[σ]is left adjoint to the forgetful functorCommRingCat ⥤ Type.CommRingCat.coyonedaAdj:Fun(-, R)is left adjoint toHom_{CRing}(R, -).CommRingCat.monoidAlgebraAdj:G ↦ R[G]asCommGrp ⥤ R-Algis left adjoint toS ↦ Sˣ.CommRingCat.unitsAdj:G ↦ ℤ[G]is left adjoint toS ↦ Sˣ.
The free functor Type u ⥤ CommRingCat sending a type X to the multivariable (commutative)
polynomials with variables x : X.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The free-forgetful adjunction for commutative rings.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Fun(-, -) as a functor Type vᵒᵖ ⥤ CommRingCat ⥤ CommRingCat.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CommRingCat.coyoneda_map_app
{m n : Type vᵒᵖ}
(f : m ⟶ n)
(R : CommRingCat)
:
(coyoneda.map f).app R = ofHom (Pi.ringHom fun (x : Opposite.unop n) => Pi.evalRingHom (fun (a : Opposite.unop m) => ↑R) (f.unop x))
@[simp]
@[simp]
theorem
CommRingCat.coyoneda_obj_map
(n : Type vᵒᵖ)
{R S : CommRingCat}
(φ : R ⟶ S)
:
(coyoneda.obj n).map φ = ofHom (Pi.ringHom fun (x : Opposite.unop n) => (Hom.hom φ).comp (Pi.evalRingHom (fun (a : Opposite.unop n) => ↑R) x))
The adjunction Hom_{CRing}(Fun(n, R), S) ≃ Fun(n, Hom_{CRing}(R, S)).
Equations
- One or more equations did not get rendered due to their size.
Instances For
If n is a singleton, Hom(n, -) is the identity in CommRingCat.
Equations
- CommRingCat.coyonedaUnique = CategoryTheory.NatIso.ofComponents (fun (X : CommRingCat) => (RingEquiv.piUnique fun (i : Opposite.unop (Opposite.op n)) => ↑X).toCommRingCatIso) ⋯
Instances For
@[simp]
theorem
CommRingCat.coyonedaUnique_inv_app_hom_apply
{n : Type v}
[Unique n]
(X : CommRingCat)
(a✝ : ↑X)
(a✝¹ : Opposite.unop (Opposite.op n))
:
@[simp]
theorem
CommRingCat.coyonedaUnique_hom_app_hom_apply
{n : Type v}
[Unique n]
(X : CommRingCat)
(a✝ : Opposite.unop (Opposite.op n) → ↑X)
:
The monoid algebra functor CommGrp ⥤ R-Alg given by G ↦ R[G].
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CommRingCat.monoidAlgebra_map
(R : CommRingCat)
{X✝ Y✝ : CommMonCat}
(f : X✝ ⟶ Y✝)
:
R.monoidAlgebra.map f = CategoryTheory.Under.homMk (ofHom (MonoidAlgebra.mapDomainRingHom (↑R) (CommMonCat.Hom.hom f))) ⋯
@[simp]
Equations
- One or more equations did not get rendered due to their size.
@[simp]
@[simp]
The adjunction G ↦ R[G] and S ↦ S between CommGrp and R-Alg.
Equations
- One or more equations did not get rendered due to their size.
Instances For
The adjunction G ↦ ℤ[G] and R ↦ Rˣ between CommGrp and CommRing.