The category of commutative additive groups has images. #
Note that we don't need to register any of the constructions here as instances, because we get them
from the fact that AddCommGrp
is an abelian category.
the image of a morphism in AddCommGrp
is just the bundling of AddMonoidHom.range f
Equations
- AddCommGrp.image f = AddCommGrp.of { x : ↑H // x ∈ AddMonoidHom.range f }
Instances For
the inclusion of image f
into the target
Equations
- AddCommGrp.image.ι f = (AddMonoidHom.range f).subtype
Instances For
Equations
- ⋯ = ⋯
def
AddCommGrp.factorThruImage
{G : AddCommGrp}
{H : AddCommGrp}
(f : G ⟶ H)
:
G ⟶ AddCommGrp.image f
the corestriction map to the image
Equations
Instances For
noncomputable def
AddCommGrp.image.lift
{G : AddCommGrp}
{H : AddCommGrp}
{f : G ⟶ H}
(F' : CategoryTheory.Limits.MonoFactorisation f)
:
AddCommGrp.image f ⟶ F'.I
the universal property for the image factorisation
Equations
- AddCommGrp.image.lift F' = { toFun := fun (x : ↑(AddCommGrp.image f)) => F'.e ↑(Classical.indefiniteDescription (fun (x_1 : ↑G) => f x_1 = ↑x) ⋯), map_zero' := ⋯, map_add' := ⋯ }
Instances For
theorem
AddCommGrp.image.lift_fac
{G : AddCommGrp}
{H : AddCommGrp}
{f : G ⟶ H}
(F' : CategoryTheory.Limits.MonoFactorisation f)
:
the factorisation of any morphism in AddCommGrp
through a mono.
Equations
Instances For
the factorisation of any morphism in AddCommGrp
through a mono has
the universal property of the image.
Equations
- AddCommGrp.isImage f = { lift := AddCommGrp.image.lift, lift_fac := ⋯ }
Instances For
noncomputable def
AddCommGrp.imageIsoRange
{G : AddCommGrp}
{H : AddCommGrp}
(f : G ⟶ H)
:
CategoryTheory.Limits.image f ≅ AddCommGrp.of { x : ↑H // x ∈ AddMonoidHom.range f }
The categorical image of a morphism in AddCommGrp
agrees with the usual group-theoretical range.
Equations
- AddCommGrp.imageIsoRange f = (CategoryTheory.Limits.Image.isImage f).isoExt (AddCommGrp.isImage f)