Azumaya Algebras #
An Azumaya algebra over a commutative ring R is a finitely generated, projective
and faithful R-algebra where the tensor product A ⊗[R] Aᵐᵒᵖ is isomorphic to the
R-endomorphisms of A via the map f : a ⊗ b ↦ (x ↦ a * x * b.unop).
TODO : Add the three more definitions and prove they are equivalent:
· There exists an R-algebra B such that B ⊗[R] A is Morita equivalent to R;
· Aᵐᵒᵖ ⊗[R] A is Morita equivalent to R;
· The center of A is R and A is a separable algebra.
Reference #
- [Benson Farb , R. Keith Dennis, Noncommutative Algebra][bensonfarb1993]
Tags #
Azumaya algebra, central simple algebra, noncommutative algebra
A as a A ⊗[R] Aᵐᵒᵖ-module (or equivalently, an A-A bimodule).
Equations
Instances For
The canonical map from A ⊗[R] Aᵐᵒᵖ to Module.End R A where
a ⊗ b maps to f : x ↦ a * x * b.
Equations
- AlgHom.mulLeftRight R A = Algebra.lsmul R R A
Instances For
An Azumaya algebra is a finitely generated, projective and faithful R-algebra where
AlgHom.mulLeftRight R A : (A ⊗[R] Aᵐᵒᵖ) →ₐ[R] Module.End R A is an isomorphism.
- out : ∃ (s : A →ₗ[R] A →₀ R), Function.LeftInverse ⇑(Finsupp.linearCombination R id) ⇑s
- bij : Function.Bijective ⇑(AlgHom.mulLeftRight R A)